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Polyhedral isomerizations of the type P1 -~ P2 -~ P3 are degenerate if P1 is 
combinatorically equivalent to P3 and planar if P2 is a planar polygon. This 
paper systematizes degenerate non-planar isomerizations of 5- and 6-vertex 
polyhedra by using their Gale diagrams which are 1- and 2-dimensional, 
respectively. Using this method, it is trivial to show that all degenerate 
non-planar isomerizations of 5-vertex polyhedra can be formulated as sequen- 
ces of Berry pseudorotation processes, i.e. the prototypical diamond-square- 
diamond (dsd) process. The Gale diagrams of the 7 combinatorically distinct 
6-vertex polyhedra consist necessarily of points on the circumference of the 
unit circle as well as the center in the case of the pentagonal pyramid. Study 
of allowed motions of these points along the circumference of the unit circle 
in these Gale diagrams reveal 6 different types of single or multiple parallel 
dsd processes or closely related dsd' or sds processes connecting these 7 
combinatorically distinct 6-vertex polyhedra. In addition, a study of allowed 
motions of the points on the circumference of the Gale diagrams of the 
6-vertex polyhedra through the center reveal 2 additional degenerate non- 
planar isomerization processes of 6-vertex polyhedra which involve pen- 
tagonal pyramid intermediates. 

Key words: Topology--Gale diagrams--Polyhedral isomerizations-- 
Diamond-square-diamond processes. 

1. Introduction 

Research during the past several years has led to a variety of approaches for the 
theoretical treatment of stereochemical non-rigidity in MLn coordination com- 
plexes (M = central atom, generally a metal; L--ligands surrounding M). Thus, 

* For part 14 of this series see reference [1]. 
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possible isomerizations of MLn polyhedra In = 4 Ref. [2], 5 Ref. [3], 6 Ref. [4], 
and 8 Ref. [5]] have been represented topologically [2, 6] as graphs in which the 
vertices represent different polyhedral isomers and the edges represent possible 
one-step isomerizations. The individual polyhedral isomerizations have been 
described in terms of so-called diamond-square-diamond (dsd) processes [7]. In 
these terms the inherent fluxionality of polyhedra can be related to topological 
features which correspond to the ability of an individual polyhedron to isomerize 
to an equivalent polyhedron through a dsd process [8]. 

A question which is not clear from these and related theoretical studies is the 
extent to which all possible polyhedral isomerizations can be represented as dsd 
processes. The general impression from all of the theoretical work on polyhedral 
rearrangements is that specific polyhedra and specific polyhedral isomerization 
processes are selected without any attempt to determine all possible polyhedra 
and polyhedral isomerizations for a given coordination number. Actually from 
the chemical point of view, the first (and easier) half of this problem is essentially 
solved since all polyhedra having up to 8 vertices have been characterized [9] 
albeit as their duals [10] (i.e. polyhedra having no more than 8 faces). This paper 
presents a solution of the second half of the problem for polyhedra with 5 and 
6 vertices by using Gale diagrams [10] to study all possible vertex motions in 
these polyhedra. 

2. Background 

Consider the polyhedron formed by the ligand donor atoms L in an MLn 
coordination complex or the vertex atoms in a metal cluster, polyhedral borane, 
etc. Properties of such polyhedra which have been characterized in previous 
papers include their topologies [11] (vertex, edge, and face relationships) and 
symmetries (automorphism (point) groups [12] or chirality functions [13]). Poly- 
hedra may also be characterized by their vertex plane structure. A vertex plane 
of a polyhedron is any plane containing 3 or more vertices of the polyhedron. 
All faces of the polyhedron are necessarily vertex planes. In addition, all polyhedra 
except the tetrahedron also have non-facial vertex planes, i.e. vertex planes 
which are not faces. The simplest example of a non-facial vertex plane is the 
plane formed by the 3 equatorial vertices of a trigonal bipyramid. 

A minimum of 3 points is needed to define a plane. Therefore, a vertex plane 
containing only 3 vertices is an ordinary vertex plane. Special vertex planes, on 
the other hand, contain 4 or more vertices. Since a polyhedron with v vertices 
is by definition a 3-dimensional figure, no vertex planes in any polyhedron can 
contain all v vertices. A polyhedron with a necessarily facial vertex plane contain- 
ing v - 1  vertices is a pyramid. A polyhedron with a non-facial vertex plane 
containing v - 2  vertices is a bipyramid. 

A polyhedral isomerization step may be defined [6] as a deformation of a specific 
polyhedron P1 to the point that the vertices define a new polyhedron P2. Of 
particular interest in the context of this work are sequences of two polyhedral 
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isomerization steps P, ~ P2 ~ P3 in which the polyhedron P3 is combinatorically 
equivalent to the polyhedron P1 (i.e. the "same" polyhedron) albeit with some 
permutation of the vertices not necessarily the identity permutation. A polyhedral 
isomerization sequence of the type P1 -~ Pz -~ P3 in which P~ and /~ are com- 
binatorically equivalent may be called a degenerate polyhedral isomerization with 
Pz as the intermediate polyhedron. A degenerate polyhedral isomerization with 
a planar intermediate "polyhedron" (i.e. a polygon) may be called a planar 
polyhedral isomerization. The simplest example of a planar polyhedral isomeriz- 
ation is the interconversion of two tetrahedra (P1 and P3) through a square planar 
intermediate P2. Except for this simplest example, planar polyhedral isomeriz- 
ations are unfavorable owing to excessive intervertex repulsion and, in the case 
of MLn coordination complexes, unfavorable or impossible hybridizations of the 
available M valence orbitals. The theoretical treatment in this paper is limited 
to the more interesting and more complicated non-planar polyhedral isomeriz- 
ations /~ ~ P3 in which the intermediate polyhedron P2 is a true three- 
dimensional figure rather than a planar polygon. 

The simplest example of a non-planar polyhedral isomerization is the Berry 
pseudorotation [14, 15] in which two trigonal bipyramidal isomers are intercon- 
verted through a square pyramid intermediate. This is also the simplest example 
of a dsd process which can be depicted schematically as follows: 

A 

C \ ; / O  " C O C - - 0  

~ B /  XB/ 

PI ~" P2 =- P3 

A previous paper of this series [8] analyzes the topologies of deltahedra having 
minimum numbers of degree 3 vertices in terms of the presence of sites (called 
dsd-situations) which permit degenerate polyhedral isomerizations through dsd- 
processes. 

Series and parallel combinations of dsd processes are possible. A pair of dsd 
processes in series involves a sequence of two dsd isomerizations P1 ~ P2 ~ P3 ~ 
P4 ~ P5 in which P~ ~ P2 ~/~ and P3 ~ P4 ~ P5 are separate dsd processes and 
P1, P3, and i~ are combinatorically equivalent. If P2 and P4 are also combinatori- 
cally equivalent the sequence P2 ~ P3 ~ P4 may be regarded as a square-diamond- 
square process (sds process). A degenerate sds process in the absence of degener- 
ate dsd processes is also possible if in a sequence P1-)P2-~P3 ~ P4~P5 the 
polyhedra P2 and P4 are combinatorically equivalent and P1 ~ P2-~ Ps and/or 
P3 -~ P4 ~/~ are non-degenerate dsd processes (i.e. P3 and P1 and/or P3 and 1~ 
are not combinatorically equivalent). 

A pair of dsd processes in parallel involves two concerted dsd processes. A good 
example of such a double dsd process is the interconversion of two D2d- 
dodecahedra through a square antiprismatic intermediate [5]. The interconversion 
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of two octahedra through a trigonal prismatic intermediate [4] is an example of 
a triple dsd process (i.e. three dsd processes in parallel). 

3. Gale diagrams 

Studies of complex polytopes have benefited by use of their Gale diagrams [10] 
in cases where the dimensionality of the Gale diagram is less than that of the 
original polytope. As will be seen below, Gale  diagrams of 5- and 6-vertex 
polyhedra can be imbedded into 1- and 2-dimensional space, respectively, thereby 
making them useful for the study of the isomerizations of such polyhedra. 

In order to obtain a Gale  diagram for a given polyhedron, the polyhedron is first 
subjected to a Gale transformation. Consider a polyhedron with v vertices as a 
set of v points X1 . . . .  , X~ in 3-dimensional space R 3. These points may be 
regarded as 3-dimensional vectors X~ = (xn, b x~,2, xn,3), 1 -< n <- v, f rom the origin 
to the polyhedron vertices. In addition, consider a set of points D ( A )  in v- 
dimensional space R ~, A = (al  . . . . .  a~) such that the following sums vanish: 

aixi, k = 0 for 1 - k-< 3 ( la)  
i=1 

ai = 0. ( lb)  
i=1 

Equation ( la )  may also be viewed as 3 orthogonality relationships between the 
v-dimensional vector A = ( a ~  . . . . . .  a~) and the three v-dimensional vectors 
(xl,k, X2,k . . . . .  X~,k), 1 --< k <- 3. Now consider the locations of the vertices of the 
polyhedron as the following v x 4 matrix: 

Do = / X2,l x2"2 x2 '3  - (2) 
i " : 

\ Xv,1 Xv,2 Xv,3 

Consider the columns of Do as vectors in R v. Since Do has rank 4, the 4 columns 
of Do are linearly independent. Hence,  the subspace M ( X )  of R ~ represented 
by these 4 linearly independent columns has dimension 4. Its orthogonal comple- 
ment  M ( A )  • = {A E R ~ [A" X = 0 for all X e M ( X ) }  coincides with D ( A )  
defined as above by Eqs. ( la )  and ( lb) .  Therefore:  

dim D ( A )  = dim M ( A )  • = v - d i m  M ( X )  = v - 4 .  (3) 

Now define the following v x ( v - 4 )  matrix: 

a l , 1  a l , 2  " ' "  a1,~-4 / 

a2,1 a2 ,2  " ' "  a2,~-4~ (4) 
D I =  i " " ' "  " " 

/ 
\ av,1 av,2 �9 �9 �9 av ,  v - 4 /  
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The rows of D1 may be considered as vectors in v - 4  dimensional space; 
conventionally the j th row is denoted by s = (aj,,a, aj,2, �9 �9 �9 aj,~-4) for j = 1 . . . . .  v. 

The final result of this construction is the assignment of a point gj in v - 4  
dimensional space (R ~-4) to each vertex xj of the polyhedron. The collection of 
v points s  x~ in R v-4  is called a Gale transform of the set of vertices 
xa . . . .  , x~ of the polyhedron in question. The following features of a Gale 
transform of a polyhedron should be noted: 
(1) A Gale  transformation of two or more vertices of a polyhedron may lead to 
the same point s i.e. some points of a Gale transform may have a multiplicity 
greater  than 1 so that the Gale transform of a polyhedron contains fewer distinct 
points than the polyhedron has vertices. 
(2) The Gale transform depends upon the choice of the basis of the M(A)  z 
subspace (e.g. the location of the origin in the coordinate system). Therefore,  
infinitely many Gale transforms are possible for a given polyhedron. Geometr i -  
cally, a Gale transform of a polyhedron is a projection of the v vertices of a 
v - 1 dimensional simplex (higher dimensional analogue of the tetrahedron) onto 
a v - 4  dimensional hyperplane [16, 17]. Since infinitely many such projections 
are possible, the Gale transform for a given polyhedron is not unique. 

In practice, it is easier to work with Gale diagrams corresponding to Gale 
transforms of interest. Condider a Gale transform of a polyhedron with v vertices 
xa . . . .  , g~ as defined above. The corresponding Gale diagram s . . . . .  ~ is defined 
by the following relationships:a~ 

2i=0  if ~ =0  (5a) 

2~ = ~ if ~ ~ O. (5b) 

In relationship (5b) ]]xi][ is the length of the vector xi (i.e. (aZl+a~2 + . .  .+  
aZv_4)l/2). If v - 4  = 1 (i.e. v - -5 ) ,  Gale diagrams can only contain the points of 
the straight line 0, 1, and - 1  of varying multiplicities mo, ma, and m-a,  respec- 
tively, where mo-> 0, ml -> 2, and m-a -> 2. If v - 4 = 2 (i.e. v = 6) Gale diagrams 
can only contain the center and circumference of the unit circle. These two types 
of Gale  diagrams are of interest in the context of this paper  since they represent 
significant structural simplifications of the corresponding polyhedra. 

The following properties of Gale diagrams are of interest since they impose 
important  restrictions on configurations of points which can be Gale  diagrams: 
(1) The set of vertices of a polyhedron not forming a given face or edge of the 
polyhedron is called a coface of the polyhedron. The regular octahedron is 
unusual since all faces are also cofaces corresponding to the faces. The interior 
of the figure formed by connecting the vertices of a Gale diagram corresponding 
to a coface must contain the central point. 
(2) A v - 5  dimensional plane or hyperplane passing through the central point 
of the Gale  diagram bisects the space of the Gale diagram into two halfspaces. 
Each such halfspace must contain at least two vertices (or one vertex of multiplicity 
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2) of the Gale diagram not including any vertices actually in the bisecting plane 
or hyperplane. Such a halfspace is called an open halfspace. 
(3) The central point is a vertex of a Gale diagram if and only if the corresponding 
polyhedron is a pyramid. This central vertex corresponds to the apex of the 
pyramid which is the coface corresponding to the base of the pyramid. 

Gale diagrams simplify problems involving polyhedra in cases where the 
dimension of the Gale diagram is less than that of the polyhedron. For this reason 

2 1 2 3 2 
0 0 - - - 0  0 0 

A(square  pyramid) B (tr igonal pyramid ) 

C (trigonat prism) D ( pentagonal pyramid ) E 

F G 

H ( octahedron ) J ( bicapped tetrahedron I 

Fig. 1. Gale diagrams for the 2 combinatorially distinct 5-vertex polyhedra and the 7 combinatorially 
distinct 6-vertex polyhedra, The properties of these polyhedra are listed in Table 1. In the 6-vertex 
Gale diagrams vertices of multiplicity 1 are represented by a single circle and vertices of multiplicity 
2 are represented by a double circle 
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5- and 6-vertex polyhedra are effectively studied by using their Gale diagrams 
which have dimensions ( v - 4 )  of 1 and 2, respectively. Figure 1 illustrates the 
Gale diagrams for the two 5-vertex polyhedra and seven 6-vertex polyhedra 
listed in Table 1. The remainder of this paper discusses non-planar polyhedral 
isomerizations of 5- and 6-vertex polyhedra in terms of allowed vertex motions 
in the corresponding Gale diagrams. In this context, an allowed vertex motion of 
a Gale diagram is a motion of one or more vertices which converts the Gale 
diagram of a polyhedron into that of another polyhedron with the same number 
of vertices without ever passing through an impossible Gale diagram such as one 
with an open halfspace containing only one vertex of unit multiplicity. Since two 
polyhedra are combinatorically equivalent if and only if their Gale diagrams are 
isomorphic [17], such allowed vertex motions of Gale diagrams are faithful 
representations of all possible non-planar polyhedral isomerizations. 

4. Isomerizations of five-vertex polyhedra 

The only possible 5-vertex polyhedra are the square pyramid and trigonal 
bipyramid. Their Gale diagrams (A and B, respectively, in Fig. 1) are the only 
2 possible 1-dimensional 5-vertex Gale diagrams which have the required 2 
vertices in each open half-space (i.e. ml and m_ 1 >--2). The only allowed vertex 
motion in a Gale diagram of a trigonal bipyramid involves motion of one point 
from the vertex of multiplicity 3 through the center point to the vertex originally 
of multiplicity 2. This interchanges the vertices of multiplicities 2 and 3 and leads 
to an equivalent Gale diagram corresponding to an isomeric trigonal bipyramid. 
The motion through the center point of the Gale diagram corresponds to the 
generation of a square pyramidal intermediate in the non-planar degenerate 
isomerization of a trigonal bipyramid. This, of course, is the Berry pseudorotation 
process [14, 15] which is the prototypical dsd process as discussed above. The 
choice of 3 points to move away from the vertex of multiplicity 3 in the Gale 
diagram of the trigonal bipyramid corresponds to the presence of 3 degenerate 
edges [8] in a trigonal bipyramid, where a degenerate edge is an edge which can 
be broken as the first step of a degenerate simple dsd polyhedral isomerization. 

This analysis of the Gale diagrams of the 2 possible 5-vertex polyhedra shows 
clearly that the only possible non-planar isomerizations of 5-vertex polyhedra 
can be represented as successive dsd processes corresponding to successive Berry 
pseudorotations. 

5. Isomerizations of six-vertex polyhedra 

The Gale transforms of the vertex set of 6-vertex polyhedra are 2-dimensional 
( v - 4  = 2). The corresponding Gale diagrams (Fig. 1: C through J, inclusive) 
have vertices on the circumference of the unit circle. In addition, the center of 
the circle is a vertex of the Gale diagram for the pentagonal pyramid. The 
maximum multiplicity of a vertex in the Gale diagram of a 6-vertex polyhedron 
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is 2 since otherwise there would be open halfspaces containing only one point 
(i.e. one of the open semicircles obtained by bisecting the unit circle using the 
diameter containing the vertex of multiplicity ->3). 

The Gale diagrams of 6-vertex polyhedra can be visualized most clearly if all of 
the diameters containing vertices are drawn as in Fig. 1. Some of these Gale 
diagrams can then be seen to have diameters with vertices of unit multiplicity at 
each end. Such diameters may be called balanced diameters. The two vertices of 
a balanced diameter form an edge which is a coface corresponding to a quadri- 
lateral face of the polyhedron. Therefore,  the number of balanced diameters in 
a Gale diagram of a 6-vertex polyhedron is equal to the number of quadrilateral 
faces of the polyhedron. 

Polyhedral isomerizations in 6 vertex polyhedra may be represented by allowed 
motions of the vertices of their Gale diagrams along the circumference of the 
unit circle or through the center in the case of polyhedral isomerizations involving 
a pentagonal bipyramid intermediate. However,  vertex motions are not allowed 
if at any time they generate one or more forbidden diameters, where a forbidden 
diameter is one containing 3 (or more) vertices. Forbidden diameters may be of 
one of the following 4 types: 
D201: A vertex of multiplicity 1 at one end and one of multiplicity 2 at the 
other end. 
D300: A vertex of multiplicity 3 at one end. 
D111 : A vertex of multiplicity i at each end and one of multiplicity 1 in the center. 
19210: A vertex of multiplicity 2 at one end and one of multiplicity 1 in the 
center. 

Each of these types of forbidden diameters bisects the unit circle of a 6-vertex 
Gale diagram into 2 open semicircles, one of which cannot contain the required 
2 vertices since only 3 vertices of the 6 are left for both open semicircles. 

Using these techniques all non-planar degenerate isomerizations involving 6- 
vertex polyhedra can be decomposed into sequences of the 8 fundamental 
processes listed in Table 2. These have the following essential properties: 

(i) Octahedron ( H )-trigonal prism ( C )-octahedron ( H ). This triple dsd-process 
shows up as the Bailar Twist [18] and the Rfiy and Dutt Twist [19] in 6-coordinate 
chelates of the type M(bidentate)3. Both of these processes involve the same 
type of rearrangement of the polyhedral vertices but have different types of edges 
in the trigonal prismatic intermediate bridged by the bidentate ligand. 

(2) Bicapped tetrahedron (J) -6 ,  11, 7-polyhedron (G)-bicapped tetrahe- 
dron(J). This is the only possible single true dsd degenerate isomerization in 
6-vertex deltahedra. 

(3) Bicapped tetrahedron (J)-pentagonal pyramid (D)-bicapped tetrahedron 
(J). This is the simplest example of an isomerization involving simultaneous 
breaking of two edges of a deltahedron to form a pentagonal face followed by 
formation of two new edges to form an equivalent deltahedron. The action 
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Process a Process type b 

H ~ C ~ H  3dsd 
J ~ G ~ J dsd 
J ~ D -) J 5-pyramidal 
G ~ E ~ G dsd' 
G -~ D -~ G 5-pyramidal 
F ~ H ~ F  sds 
F ~ E ~ F dsd' 
E ~ C ~ E dsd or dsd' 

R. Bruce King 

Table 2. The 8 fundamental degenerate 
isomerization processes of six-vertex 
polyhedra 

aThe polyhedra are designated by the 
letters used in Table 1. 
b See text for a detailed discussion of these 
processes. 

involving the pentagonal face of the pentagonal pyramid intermediate can be 
represented schematically as follows: 

A process of this type can be called a 5 - p y r a m i d a l  p r o c e s s  since its simplest 
example (the process in question) involves interconversion of equivalent del- 
tahedra through a pentagonal pyramid intermediate. Using this terminology, the 
dsd process can be called analogously a 4-pyramidal  process since its simplest 
example (the Berry pseudorotation of the trigonal bipyramid B -~ A ~ B discussed 
above) involves a square pyramid intermediate. Thus, in theory, each new number  
of vertices v can introduce a new ( v - D - p y r a m i d a l  process. However ,  these 
processes rapidly become increasingly unfavorable in M L ,  complexes as the 
number  of vertices increases owing to the general unfavourability of large numbers 
of coplanar ligands L as discussed above in the context of planar polyhedral 
isomerizations. 

( 4 )  G - E - G .  This process involving relatively non-descript low symmetry 6- 
vertex polyhedra looks like a dsd process but is not really one. Note that the 
6,11,7-polyhedron G has one quadrilateral face. Rupture  of one of the two edges 
of G connecting the vertex of degree 5 with one of degree 4 generates a new 
quadrilateral face to form E which has two quadrilateral faces. A new edge is 
then formed along the diagonal of the quadrilateral face of E corresponding to 
the o r i g i n a l  quadrilateral face of G and connecting a vertex of degree 4 with 
one of degree 3. An ordinary dsd process involves subtraction of an edge to 
convert two adjacent triangular faces into a quadrilateral face followed by addition 
of a new edge across the diagonal of this new quadrilateral face to convert this 
quadrilateral face back to two new triangular faces. In the modified dsd process 
G - E - G  (called a dsd' process) the quadrilateral face to which the diagonal edge 
is added is not the same as the quadrilateral face previously obtained after 
subtracting an edge connecting two triangular faces. Of course, the dsd' process 
is only possible if the initial polyhedron contains at least one quadrilateral face. 

( 5 )  G - D - G .  The unique edge 844 of the 6,11,7-polyhedron connecting the two 
vertices of degree 4 is removed to generate a pentagonal pyramid (after necessary 
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vertex movements towards coplanarity of five vertices). In this way, the triangular 
and quadrilateral faces of G connected by 844 become the pentagonal base of 
the pentagonal pyramid (D). A new edge" (different from e44) is added across 
the pentagonal base of the pyramid to form a different pair of triangular and 
quadrilateral faces to give a different 6,11,7-polyhedron equivalent to G. The 
action involving the pentagonal face of the pentagonal pyramid can be represented 
schematically as follows: 

This process can be regarded as a 5-pyramidal process of a different type than 
the J-D-J process. 

(6) F-H-J. This is an example of a square-diamond-square (sds) process which 
does not have a corresponding dsd process capable of degenerately isomerizing 
the polyhedron with the larger number of edges (in this case, the regular octahe- 
dron H). Thus addition to the 6,11,7-polyhedron of a single edge connecting 
the two vertices of degree 3 leads to a regular octahedron. Removal of any other 
of the 12 edges of this octahedron regenerates a 6,11,7-polyhedron F which is 
equivalent but not identical to the original 6,11,7-polyhedron. However, a regular 
octahedron cannot be converted to another regular octahedron through a single 
dsd process involving a 6,11,7-polyhedron F as an intermediate; such a process 
can only convert a regular octahedron to a bicapped tetrahedron, i.e. H-F-J. This 
relates to the earlier observation [8] that none of the 12 edges of the regular 
octahedron are degenerate. Furthermore, neither J-F-J nor F-J-F are funda- 
mental degenerate isomerization processes since neither J nor F can undergo a 
simple degenerate isomerization through F or J intermediates, respectively, as 
can be shown by experimenting with their Gale diagrams. 

(7) F-E-F. This is another example of dsd' process discussed in detail above for 
the G-E-G process. 

(8) E-C-E. This can be either a dsd or dsd' process depending upon whether 
the edge added to the trigonal prism intermediate C is a diagonal of the new 
quadrilateral face generated by removal of the edge from the original 6,10,6- 
polyhedron E. 

The relationships between the different 6-vertex polyhedra can be represented 
by the following isomerization lattice in which the 8 edges represent the pairs of 
polyhedra involved in the 8 fundamental non-planar degenerate isomerization 
processes noted above (the letters of the vertices refer to the designations of the 
polyhedra in Table 1): 

c ~  
/E\ /~ 

/F G\ 
H J 
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Letters corresponding to 6-vertex polyhedra with the same numbers of edges 
(and faces) are depicted at the same level in this lattice. Similar isomerization 
lattices are likely to be useful for representing relationships between the sets of 
polyhedra with the same numbers of vertices v where v > 6. The number  of 
possible combinatorically distinct polyhedra increases rapidly as v increases above 
6. Thus, the numbers of combinatorically distinct polyhedra with 7 and 8 vertices 
are 34 and 257, respectively [9]. Also, the Gale diagrams for polyhedra with 7 
or more  vertices require 3 or more dimensions (i.e. v - 4 - >  3) and therefore are 
not useful for studying the isomerization of such polyhedra. 

6. Conclusions 

This paper  shows how Gale diagrams are a useful device for studying isomeriz- 
ations of polyhedra having so few vertices, namely 5 or 6, that the dimensionality 
of the Gale  diagram is less than 3. Thus, this method provides a clear demonstra-  
tion that isomerizations of 5-vertex polyhedra must involve either a planar 
pentagon intermediate or successive Berry pseudorotations [14, 15] (i.e. dsd 
processes). Isomerizations involving the seven 6-vertex polyhedra, of course, are 
considerably more complex. However ,  the use of Gale diagrams facilitates the 
search for the 8 fundamental  non-planar  isomerization processes of 6-vertex 
polyhedra (Table 2). Six of these 8 processes are single or multiple parallel dsd 
processes or the related dsd' or sds processes. The remaining 2 processes involve 
pentagonal pyramid intermediates. 

The Gale diagram approach does not appear  to be advantageous for the direct 
study of isomerizations in polyhedra with more  than 6 vertices since the corres- 
ponding Gale transformations do not reduce the dimensionality of the system. 
However ,  the analysis in this paper  for 5- and 6-vertex polyhedra suggests that 
non-planar  isomerizations in v-vertex polyhedra can be described as a series of 
p-pyramidal  processes where 4-< p-< v -  1. Fur thermore,  p-pyramidal  processes 
become increasingly less favorable with increasing p because of the larger number  
of required coplanar vertices for the p-pyramidal  intermediate. This is consistent 
with an assumption in an earlier paper  of this series [8] that the lowest energy 
processes for polyhedral rearrangements  can be decomposed into one or more 
dsd processes. 
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